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Abstract 
In this study, researchers used probabilistic methods to determine the long-term extreme and fa-
tigue loads of two different 1.5 MW wind turbine designs. The method of moments was used to 
calculate short-term distributions of data for varying wind conditions. The data of interest for the 
study was limited to the in-plane and out-of-plane bending loads at the roots of the blades of both 
turbines.  

We examined four different distributions for fitting of the short-term data. It was discovered that 
thresholding the data before fitting the short-term distribution increased the accuracy of the fitted 
distribution in following the trends of the largest extreme and fatigue cycle values for a given 
wind condition. The optimal threshold value for extreme loads was found to be the mean value 
plus 1.4 times the standard deviation of the original time series of the bending load. For fatigue 
loading, the optimal threshold value was the 99th percentile value of the original cyclic distribu-
tion. Rainflow counted cyclic amplitudes from time series simulations were also adjusted using a 
Goodman correction to account for nonzero cyclic midpoint values.  

When fitting a short-term distribution to a given data set, the higher-order moments were found 
to have the greatest amount of uncertainty and also the largest influence on the extrapolated 
long-term loads. Using large data sets, smoothing of the statistical moments between wind condi-
tions and parametrically modeling moments of the distribution reduced this uncertainty.  

The short-term distributions were integrated over all wind conditions along with the joint prob-
ability distribution function of the mean wind speed and turbulence level to produce the long-
term distributions. From the long-term distributions of extremes, the 1- and 50-year extreme 
loads were estimated. From the long-term distributions of fatigue cycles, the fatigue lifetime of 
the wind turbine could be estimated, which was found to be highly dependent on the material 
fatigue exponent. Long-term distributions of fatigue cycles showed that out-of-plane blade bend-
ing loads produced the largest amplitude cycles. Hence, these bending loads were used to esti-
mate the lifetime of both turbines under the assumption of fixed ultimate bending strength. Life-
times were not found to decrease significantly when accounting for the tail of the fitted distribu-
tion for the large data set used.  

We examined several alternative methods to the full integration technique for calculating long-
term distributions. One alternative required extrapolating the turbulence level at each mean wind 
speed before simulation. This method greatly reduced the number of simulations required, but 
was found to be sensitive to the cut-out wind speed for stall regulated turbines. Another alterna-
tive was to use a parametric model of the statistical moments of the data sets. The parametric 
model predicted nearly identical loads to the full integration technique and required less data. 
Another simplified method for calculating extremes and lifetimes using a deterministic, elevated 
turbulence intensity produced slightly conservative results relative to the full distribution method 
and significantly reduced the number of simulations required.  
The accuracy of the extrapolation techniques was quantified by comparing the results to a one-
year direct simulation of turbine operation. For extreme values, the extrapolation technique accu-
rately predicted the long-term distributions of the in-plane bending loads for both turbines, and 
the out-of-plane bending load for the stall-regulated turbine, but overpredicted the load distribu-
tions for the out-of-plane bending load on the pitch-regulated turbine. For fatigue cycles, the ex-
trapolation technique accurately predicted the long-term distributions of the in-plane bending 
loads and overpredicted the out-of-plane bending loads for both turbines. Regardless of errone-
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ous predictions of bending load distributions, lifetime estimates using extrapolation were on the 
order of estimates from the one-year simulation. 
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Introduction 
Over the past decade, researchers and industrial designers have become increasingly interested in 
probabilistic methods for wind turbine design. This interest has largely been driven by the desire 
to replace outdated empirical-based design models with more physically relevant models that can 
be accurately applied to the next generation of wind turbine designs. Probabilistic methods are 
well suited to this task because they use limited amounts of either experimental or simulation 
data from actual turbine designs to predict long-term loading. These methods can be used to ex-
trapolate extreme and fatigue loads, as well as other quantities such as deflections, but this report 
will concentrate primarily on loads. 

As far as predicting extreme loads, current design standards for wind turbines, governed by the 
IEC [1], require an estimate of the extreme 1-year and 50-year operating load. In the current ver-
sion of the standard, these loads are specified as discrete events based on design experience and 
empirical models of older turbine designs. The standards also require using dynamic analysis of 
the fatigue loads to formulate the design loads for the turbine. Within the last few years, some 
concern has been raised that these design load cases are inaccurate and may be non-conservative 
for the next generation of turbines. In response to this concern, researchers have performed many 
studies using probabilistic methods to increase the accuracy of the predicted loads. In one of the 
earlier works, Veers and Winterstein [2] studied the method of moments for predicting long-term 
fatigue loading and also introduced a non-linear parametric model which was useful for extrapo-
lating from limited data sets. A few years later, Ronold [3] also examined moment-based fatigue 
modeling, and studied the calibration of partial safety factors. A follow-up study by Ronold and 
Larsen [4], as well as Madsen et al. [5], showed that these techniques could be used for extreme 
load extrapolation and suggested that the statistics of the extremes follows a Gumbel distribution. 
Thomsen [6] used similar techniques and highlighted the importance of the cyclic midpoint load 
and turbulence intensity on fatigue extrapolation. Fitzwater and Winterstein [7] examined the 
effect of statistical uncertainty dependent on the type of data used in these extrapolation meth-
ods. Manuel et al. [8] continued the work of Veers and Winterstein using probabilistic methods 
and parametric models based on variations in mean wind speed and turbulence intensity. They 
also performed a detailed uncertainty analysis. Finally, driven by the complex nature of the mo-
ment-based calculations and expansive data sets often required, both Fitzwater et al. [9] and 
Moriarty et al. [10] examined several different simplifications for these techniques with varying 
degrees of success.  

This study extends these previous works by examining moment-based probability methods, as 
well as the effects of using a joint distribution of mean wind speed and turbulence level and the 
statistical uncertainty of moment-based methods. This study will also introduce refinements such 
as compensating for non-zero cyclic midpoints in fatigue calculations, applying a threshold tech-
nique, and fully integrating all probable operating conditions. Simplifications of the method and 
parametric modeling are found to be useful for design without a significant loss in accuracy. 
Several methods of extrapolation are compared in the hopes of finding a consistent and accurate 
method that could be used by designers and written into a new version of the design standards. 
The results from extrapolation will also be compared to a direct 1-year simulation, which will 
give a measure of the accuracy of these techniques. 
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Wind Environment  
The driving force acting on wind turbines is, of course, the wind, which is traditionally modeled 
using two parameters: the mean wind speed and the standard deviation of the wind speed or tur-
bulence level. Often, the turbulence level is given as a deterministic value conditional on mean 
wind speed. This is the case for the international design standard, IEC 61400-1 Ed. 2 [1], which 
assumes that turbulence level varies linearly with mean wind speed. However, measurements 
[11] have shown that turbulence level is not deterministic for a given mean wind speed, but is 
instead a random variable for both on-shore and off-shore sites. In order to account for this vari-
ability, along with the variation of mean wind speed a joint probability density function for both 
turbulence level and wind speed is proposed. This model assumes that mean wind speed follows 
a Rayleigh distribution and turbulence level is distributed like a log-normal function. The joint 
density function is described by 

)()(),(, vfvtftvf VTTV =   [1] 

where the marginal mean wind speed distribution is defined by 
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and the log-normal conditional turbulence distribution is 
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where µV = 10 m/s, Iref = 0.16, and c = 3.8 for an IEC class I-A wind site [1]. Note that the Iref 
parameter has been defined to represent the mean value rather that the mean plus one standard 
deviation as given in IEC 61400-1 Ed.2. Figures 1 and 2 show the joint probability density as a 
function of mean wind speed and turbulence level (sigma). 
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Because of the complexity of this distribution, a more straightforward normal distribution of tur-
bulence level was also examined. The equation for the resulting conditional turbulence distribu-
tion is given by 
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Comparisons between extrapolations using the normal and the log-normal distribution are made 
below.  

Simulation Data 
In this study, we examined two different wind turbine configurations; one that was stall regulated 
at higher wind speeds and one that was pitch regulated. Each turbine model consisted of a three-
bladed upwind rotor with twisted and tapered blades and a radius of 35 m. While actually ficti-
tious, the turbines represented the generic characteristics of typical turbines with a rated power of 
1.5 MW. The stall-regulated turbine was assumed to run at a constant speed of 16.9 RPM while 
the pitch-regulated, variable speed machine had a rated speed of 20.4 RPM. The rated wind 
speeds of the pitch-regulated and stall-regulated turbines were 11 m/s and 14 m/s respectively. 
The operating wind speed ranges of both turbines were between 5 and 25 m/s in conditions 
specified for the IEC class I-A [1]. For the purpose of simplification, the turbines were assumed 
to operate 100% of the time between cut-in and cut-out wind speeds with 100% availability. The 
hub height for both rotors was 84 m. 

All simulations in this study were performed using SNWind [12] to generate 10-minute three-
dimensional turbulent wind files and the FAST aeroelastic code [13] to calculate the turbine re-
sponse in these winds. The turbulent spectrum of each wind simulation was determined using the 
Kaimal spectral model specified in the IEC standard. The vertical wind shear was modeled using 
a power law exponent of 0.2, also specified in the standard. The wind files were calculated using 
a 10 x 10 grid over the rotor plane and the same wind inflow conditions were used for both tur-
bine models. In the FAST calculations, three blade modes (two flap and one edge) were modeled 
along with four tower modes (two in each direction). 

Figure  1.  Joint probability density function of 
mean wind speed and turbulence level 

Figure  2.  Contour plot of joint probability 
density function 
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In order to examine each turbine's response in all probable wind conditions, a large data set of 
wind simulations was compiled. Wind simulations were run over a range of mean wind speeds 
between 5 and 25 m/s (in 1 m/s increments) and longitudinal turbulence levels between 0.2 and 5 
m/s (in 0.2 m/s increments). Nine simulations per wind condition were calculated resulting in a 
total of 4725 simulations for each turbine. Each wind simulation used a different seed number to 
ensure statistical independence between simulations. In order to eliminate start up and numerical 
transients in each simulation, an additional initialization period of 50 seconds was also calculated 
and removed from each simulation prior to analysis. For low wind speeds of 7 m/s or less, the 
stall-regulated machine operated at very high tip speed ratios, which caused instabilities in the 
dynamic wake model used in FAST. Therefore, for wind speeds of 7 m/s and lower, the equilib-
rium wake model was used instead. The outputs considered from the simulations were the in-
plane and out-of-plane bending loads at the root of a blade. The local extreme values from each 
10-minute simulation were extracted using a peak over threshold method, as described below. 
We calculated fatigue cycle amplitudes and midpoint values using a rainflow counting algorithm 
[14] on the concatenation of all nine files at each wind condition. 
A modified version of the FITS code [15], a moment-based probability distribution fitting code, 
was used to calculate the short-term fitted probability distributions. Four different distributions 
were examined for calculating the short-term distributions: Gumbel, Weibull (which required 
knowledge of the mean and standard deviation of the distribution), a quadratic Weibull, and a 3-
parameter Weibull model (which required knowledge of the mean, standard deviation, and 
skewness of the distribution, as explained in the next section). 

Method of Moments 
The short-term probability distributions of extreme and fatigue loading were calculated using the 
method of statistical moments, where the cumulative probability distribution for each short-term 
data set was represented by an analytic function. This function was then used to determine the 
long-term total probability distribution by integration over all environmental wind conditions, as 
described below. Since the design requires a low total exceedance probability, this integration 
results in an evaluation of the short-term cumulative distribution function (CDF) over a range 
that will extend beyond the original data. Thus, it is important for the analytic representation to 
accurately represent the data and its trend for the largest values. Two analytic distributions were 
used in this study to describe the short-term CDFs.  They were: 

Gumbel: 
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The Weibull distribution applies for values of x>x0, whereas the Gumbel distribution applies for 
the full range of x. In order to estimate the parameters in these models, a statistical moment-
based method was used [15]. In this method, the statistical moments of the data are computed 
and then the parameters in the model are determined by matching analytical expressions for the 
moments in terms of the parameters.  Given n parameters in the model, the first n statistical mo-
ments are used. 
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It is convenient to express the distributions in terms of a normalized variable y, which is defined 
by a transformation of the variable x. The normalized statistical moments are given in Table 1 for 
these distributions. In cases where a linear transformation between x and y is used 
(i.e. cyxx += 0 ), the normalized moments are given by 

yx cx µµ += 0   [13] 

yx cσσ =   [14] 

yx εε =   [15] 

In this study, four different types of distribution fits were compared. The first (Gumbel) utilizes 
the standard Gumbel distribution, which has two parameters. In this case, the first two moments 
are used to estimate the parameters x0 and c. Since x is a linear transformation of y, this results in 

π
σ 6ˆ xc =   [16] 

γµ cx x ˆˆ0 −=   [17] 

were γ  is Euler's constant given in Table 1. 

The second method (Weibull) assumes x0 is known a priori. In this case, there are also two un-
known parameters, α and c. The coefficient of variation (COV) for the shifted data is defined by 
the ratio  
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This equation is solved for the parameter α̂ , which in turn gives 
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where Γ  is the classical gamma function [16]. 

The third method (Quadratic Weibull) has three unknown parameters and assumes y is related to 
x by a quadratic distortion of the linear transformation for a standard Weibull fit. This distortion 
is adjusted to match the skewness in the data. Two forms are used depending on whether the 
skewness should be increased or decreased relative to the skewness in the data. In particular, de-
fining  

c
xxu 0−

=    [20] 

gives: 
2uuy ε+=   [21] 

for the case when the standard Weibull skewness is greater than the data, or 
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ε
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=   [22] 

for the case when the standard Weibull skewness is less than the data. From these relations, u 
will be given in terms of a function, f(y,ε) which is monotonically increasing with y for positive 
ε. The statistical moments for u are then given by integrals that only depend on the two parame-
ters ε  and α. Thus, 
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In this method, the Weibull exponent, α̂ , is determined from the COV as in the standard Weibull 
method and therefore depends on the assumed a priori shift in the data. The quadratic distortion 
parameter, ε̂ , is determined by numerical integration of the equations for the statistical moments 
and by matching the skewness parameter, uη , to the skewness in the data. This results in the fol-
lowing equations for the parameters 

( ) xu ηαεη =ˆ,ˆ   [26] 

( )αεσ
σ
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u
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( )αεµµ ˆ,ˆˆˆ0 ux cx −=   [28] 

The last method (Three Parameter Weibull) also has three unknown parameters and is able to 
match three statistical moments. It utilizes a linear transformation of the Weibull variable, but 
determines the Weibull exponent from the skewness, which is not dependent on a priori knowl-
edge of the shift.  Thus, 

( ) xy ηαη =ˆ   [29] 
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y
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Because the first equation is transcendental in terms of the gamma functions given in Table 1, it 
must be solved iteratively. 
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The first three methods were implemented in the FITS program developed at Stanford University 
[15] and the fourth by a minor addition to this same program. 

Extreme Value Analysis 
The first part of this report will focus on extreme values, while the second part will focus on 
fatigue analysis. The estimate of the long-term behavior for these different loading types is 
similar. For example, both methods use thresholding to improve the accuracy of their short-term 
distribution fits. However, there are subtle differences which are highlighted in each section 
below. 

Selection of the threshold value 
Before short-term probability distributions of the extreme values could be calculated, the local 
maxima data (or local extremes) had to be extracted from the bending load time series. A peak-
over-threshold method was used to extract these data. This method selects the largest value be-
tween positive slope up-crossings of the threshold and also reduces the potential correlation be-
tween selected local maxima. Non-correlation is critical because the method used to calculate the 
long-term distributions assumes that the sampled local maxima are independent, as described 
below. This method also eliminates the majority of smaller amplitude extremes that are less sig-
nificant when extrapolating to large amplitude long-term loads. 
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Table 1. Statistical properties of Weibull and Gumbel distributions 
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Ideally, researchers would choose 
a threshold such that only the most 
statistically relevant extreme val-
ues remained in the distribution. 
Researchers could use personal 
judgment and visual inspection to 
identify the ideal threshold value. 
However, in this study, because we 
needed to identify 525 separate 
threshold values, a more automated 
approach was needed. The chosen 
method for determining the thresh-
old was based on the mean and 
standard deviation of the original 
time series, as described below. 
More sophisticated methods for 
determining the threshold may pro-
duce better results, and this is an 
area for future study. 

The choice of threshold has a sig-
nificant effect on the statistics and shape of the distribution, as seen in Figure 3. This figure 
shows four different distributions of extremes and three resultant fits using three different 
threshold values and a three-parameter Weibull model. The data have all been extracted from the 
same original time series of out-of-plane bending load from a compilation of nine 10-minute 
simulations for the pitch-regulated machine. The wind conditions for this data set were a mean 
wind speed of 10 m/s and a turbulence intensity of 18%. In Figure 3, the three different thresh-
olds examined were: the mean of the original aggregate time series data, the mean plus 1.4 times 
the standard deviation, and the maximum cyclic mean derived from azimuthal averaging of the 
time series.  

The mean value is the lowest of these quantities and preserves the greatest number of maxima 
from the time series. Because much of the maxima data lies close to the threshold, however, the 
distribution is heavily weighted to lower values of the bending load and the fitted distribution 
does a poor job of following the trend of the tail of the data, or the highest values of bending 
load. It is common practice when extrapolating extreme values to concentrate on fitting the gen-
eral distribution shape of the tail of the distribution since the largest values are of primary inter-
est. Therefore, while using the mean of the time series data for the threshold preserves a large 
number of points and reduces the statistical uncertainty (as discussed in the next section), a 
higher threshold value should improve the accuracy of the fitted distribution in following the 
trends in the tail of the data.  

The next higher threshold value is that of the maximum cyclic mean. This value was obtained by 
calculating the azimuth average of the aggregate time series in 36 different azimuth angle bins 
and finding the largest value. The maximum cyclic mean is slightly higher than the overall mean 
value for the out-of-plane bending load and therefore eliminates some of the lower value ex-
tremes. However, there is only a slight improvement of the fitted distribution in matching the tail 
of the data, as seen in Figure 3.  

Figure  3. Effect of threshold on accuracy of fit for extreme 
values (Out-of-plane bending load of pitch-regulated tur-
bine) 
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The next highest threshold examined was the mean plus 1.4 times the standard deviation of the 
original time series. From Figure 3, we can see that this value is much higher than the previous 
two thresholds and many of the lower value extremes are removed from consideration. The dis-
tribution fit to the data much more closely follows the trend in the tail. We might expect that an 
even higher threshold would produce a fitted distribution that could almost perfectly match the 
largest data values. The largest values, however, exhibit considerable scatter compared to the tail 
of the distribution from which they are drawn.  Thus, lower statistical uncertainty is obtained by 
retaining more data so long as it represents independent samples from the same parent distribu-
tion whose shape accurately follows the selected distribution shape. Also, for some time series a 
threshold of the mean plus 1.4 times the standard deviation was the largest value found that did 
not eliminate a majority (or all) of the local maxima. This is particularly important at low turbu-
lence levels where the time series essentially becomes a deterministic sine wave whose maxi-
mum point is always the mean plus 1.414 ( 2 ) times the standard deviation. These low-
turbulence cases were considered of less importance in determining the overall exceedance prob-
ability. A threshold of the mean plus 1.4 times the standard deviation was found to be a good 
balance between low statistical uncertainty and concentrating on data that represent the trend for 
the distribution tail.  This value of threshold was used to extract local maxima for all of the data 
sets. 

Note in Figure 3 that as the threshold value increases so does the probability of exceedance of 
the data values, which is most noticeable on the tails of the distributions. This effect is due to the 
fact that the probability of exceedance for the largest data value in a set is inversely proportional 
to the number of data points in the data set, i.e. fewer data points results in higher minimum ex-
ceedance probability for a given data set time duration. To further demonstrate that this is the 
cause of this behavior, the distributions can be 
normalized relative to the number of data 
points. Figure 4 shows the normalized distribu-
tions of all the local maxima and the distribu-
tion using the highest threshold value, where the 
normalization factor is the total number of local 
maxima acquired without a threshold. The two 
curves collapse fairly well upon normalization, 
although not perfectly. For example, the second 
largest local maximum (probability just above 
0.0001) in Figure 4 is not selected by the peak-
over-threshold method but remains in the distri-
bution of all the local maxima.  The elimination 
of this peak using a threshold method is appro-
priate since it occurred within 0.35 sec. of the 
largest peak in the original time series and thus 
would have been significantly correlated. 

 

 

 

 

Figure  4. Normalized probability distributions 
of extreme values (Out-of-plane bending load 
of pitch-regulated turbine) 
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Uncertainty of the statistical moments  
One disadvantage of using a moment-based probability fitting technique, compared, for example, 
to a least-squares regression or maximum likelihood method, is that the statistical moments 
themselves contain a certain amount of statistical uncertainty that can significantly affect the 
shape of the distribution. In addition, the higher the order of the statistical moments used, the 
more uncertain these moments will be for a given data set with a fixed number of points. In order 
to examine the relative uncertainty of the statistical moments, an additional, more extensive, 
study at a single wind speed and turbulence level was performed. In this study, we evaluated the 
variation of the first three moments, the shifted mean (mean value - threshold), standard devia-
tion and skewness, and two other quantities: threshold value and number of maxima per 10 min. 
simulation. The data used in the study consisted of 300 10-minute time series simulations of the 
out-of-plane bending load at the root of the blade on the pitch-regulated turbine operating in a 10 
m/s mean wind with 18% turbulence intensity. Each of these time series was randomly grouped 
into an increasing number of aggregate simulations from which maxima were extracted and sta-
tistical moments were calculated. Fifty different random groupings of 1 to 100 simulations were 
examined and the threshold value, shifted mean, standard deviation, and skewness of the result-
ing maxima, as well as the number of maxima are shown in Figures 5-9 respectively.  

The dashed horizontal lines in each of these figures represents 5% deviation (above and below) 
from the mean value of the 50 groups of the statistical moment with an aggregate file size of 100 
simulations, i.e. the mean of the right-most points in each figure. This 5% deviation was found to 
have an effect on the long-term fully integrated probability distributions of extreme loads, where 
a 5% change in shifted mean value for all wind conditions leads to a relatively small 0.3% 
change in the predicted 50-year extreme load, while a 5% change in the standard deviation re-
sults in a 2.8% change in the 50-year load, and a 5% change in the skewness results in a 3.4% 
change in the 50-year load. Equivalent changes in threshold value results in a 2% change in the 
50-year load. And finally, a 5% deviation in the number of maxima per 10 min. simulation 
would produce a minimal 0.2% change in the 50-year load. Obviously, from these figures, the 
skewness is going to have the greatest effect on the predicted long-term load as it is not fully 
converged within the +/-5% band for even 100 simulations. The standard deviation will also af-

Figure  5. Calculated bending load threshold 
vs. number of aggregate 10-minute simulations 
(Out-of-plane bending load of pitch-regulated 
turbine) 

Figure  6. Calculated shifted mean value of 
maxima vs. number of aggregate 10-minute 
simulations (Out-of-plane bending load of 
pitch-regulated turbine) 
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fect the long-term load if the number of simula-
tions is less than 30. Variation in the threshold 
value will not greatly affect the long-term load 
because it is fairly stable even for a very low 
number of simulations in the aggregate data set. 
Changes in the shifted mean and number of 
maxima per 10 min. also will have little effect 
on the long-term load because of their low sen-
sitivity. 

From these figures, we can see that using nine 
simulations per wind condition is insufficient to 
provide stable moments for long-term probabil-
ity distributions. Ideally, 30 or more simulations 
per wind condition would be available. How-
ever, with 525 wind conditions being modeled, 
the total number of simulations would quickly 
become prohibitive in terms of computation 
time. 

To increase the effective number of simulations per data point and reduce the statistical uncer-
tainty of the moments, we investigated averaging statistical moments between various wind con-
ditions. Figure 10 shows a plot of the skewness for the out-of-plane bending load maxima from 
the pitch-regulated turbine at all simulated wind conditions. There is some variation, particularly 
around the rated wind speed of 11 m/s, but a simple regression through all of these points reveals 
that the trend in the skewness is fairly constant with both wind speed and turbulence intensity. 
Figure 11 shows the skewness values for a stall-regulated turbine. These skewness values have 
even less variation than those of the pitch-regulated turbine and the data trend remains well ap-
proximated by a constant value. Therefore, for all long-term probability distributions the skew-
ness of each short-term distribution was assumed to be a constant value equivalent to the mean 
skewness of all simulated wind conditions (the dashed lines in Figures 10 & 11). For the other 
two statistical moments, mean and standard deviation, as well as threshold value and number of 

Figure  7. Calculated standard deviation of 
maxima vs. number of aggregate 10-minute 
simulations (Out-of-plane bending load of 
pitch-regulated turbine) 

Figure  8. Calculated skewness of maxima vs. 
number of aggregate 10-minute simulations 
(Out-of-plane bending load of pitch-regulated 
turbine) 

Figure  9. Calculated number of load maxima 
vs. number of aggregate 10-minute simulations 
(Out-of-plane bending load of pitch-regulated 
turbine) 
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data points used to calculate the short-term dis-
tributions, a smoothing process was imple-
mented. This smoothing process was done by 
combining an average of the statistical moment 
at each wind condition with each neighboring 
wind condition in both the mean wind speed and 
turbulence direction, i.e. the average of five 
wind conditions. This averaging lowered the 
statistical uncertainty of the moments, but had a 
fairly minor effect on the predicted long-term 
distribution, as seen in Figure 12. The reason the 
effect of smoothing is not more substantial is 
likely because the integrated long-term distribu-
tion tends to average out the random variations 
in the unsmoothed data when all wind condi-
tions are considered.  

Short-term probability fits 
Before a long-term distribution of extreme loads could be estimated, the short-term probability 
distribution was calculated for each (V, σ) combination. The choice of distribution used to model 
the short-term data distribution had a significant effect on the accuracy of the probability distri-
bution in following the trends in the data, particularly for the largest data values (or tail of the 
data). The largest data values are considered most important for loads extrapolation because they 
are most likely to be physically and statistically similar to the long-term extrapolated load values. 

Because the Weibull and quadratic Weibull methods are constrained to pass through zero mo-
ment, better fits result when the distribution starts near zero. However, the local extremes were 
extracted using a peak-over-threshold method, and hence no data existed below the threshold 
value. Therefore, before calculating moments and fitting the distribution, all data were shifted by 
subtracting the threshold value, which was the mean load from the combination of the nine 10-
min. simulations at each wind condition. Because of their formulation, the shift does not affect 
the Gumbel or three-parameter Weibull models.  

Figure  10. Skewness of load maxima for pitch-
regulated turbine (Out-of-plane bending load) 

Figure  11. Skewness of load maxima for stall-
regulated turbine (Out-of-plane bending load) 

Figure  12. Effect of moment smoothing on 
long-term probability distribution for pitch-
regulated turbine (Out-of-plane bending load) 
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Figures 13-15 show the exceedance probability 
from these distribution fits along with the 
shifted data for out-of-plane bending load of the 
pitch-regulated machine. Each of these figures 
shows data at the same mean wind speed, 10 
m/s, but at three different turbulence levels. 
Figure 13 shows the distributions for 2% turbu-
lence intensity. The largest data values, out on 
the tail of the distribution, lie very close to the 
lines for all of the fitted distributions and there-
fore no distribution model is obviously more 
accurate for this wind condition. Figure 14 
shows the distribution for a more common tur-
bulence intensity of 18%. In this plot, there is a 
slight kink in the shifted data near 200 kNm that 
is not properly modeled by any of the fitted dis-
tributions. The quadratic Weibull and three-
parameter Weibull are the closest distributions 
to the trends in the data, but still overpredict the load for a given level of probability. This kink 
indicates that there is a change in the physical process for higher load values, which may require 
more complex models to properly follow the probability distribution. The data from simulations 
at a larger turbulence intensity of 50%, seen in Figure 15, also appear to diverge from each of the 
fit models, with an even more pronounced kink than the 18% turbulence intensity. Again, the 
closest fit to the data in this figure is the quadratic Weibull model. If a long-term load were ex-
trapolated using these short-term fits, one would expect that the extrapolated value would over-
predict the true load. 

Interestingly, as shown in Figure 16, the divergence between the data and the fitted distributions 
is not a problem for the stall-regulated turbine. For the same wind conditions present in Figure 
15, the fitted distributions of the stall-regulated turbine follow the trends in the tail of the data, 
which does not contain the kink seen in the pitch-regulated machine data at higher turbulence 
intensities. Further examination of several data sets from the pitch-regulated turbine indicates 

Figure 13. Probability of exceedance, Vmean = 10 
m/s, σ = 0.2 m/s, pitch-regulated turbine (Out-
of-plane bending load) 

Figure 14. Probability of exceedance, Vmean = 10 
m/s, σ = 1.8 m/s, pitch-regulated turbine (Out-
of-plane bending load) 

Figure 15. Probability of exceedance, Vmean = 10 
m/s, σ = 5.0 m/s, pitch-regulated turbine (Out-
of-plane bending load) 
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that this divergence is particularly prevalent 
around rated wind speed (11 m/s). It is likely 
that near rated wind speed, the control system of 
the pitch-regulated turbine changes operating 
regimes many times during a 10-min. simula-
tion. This is more likely to occur at higher tur-
bulence intensities, which may explain the kink 
in the data that cannot be modeled by the 
method of moments. This should be an area of 
future research and may require an alternative 
method of fitting the probability distributions of 
pitch-regulated turbine loads. 

Comparing the behavior seen in these plots, it is 
not obvious which probability model should be 
used to fit the maxima data. It is clear, however, 
that the turbulence intensity has a significant 
effect on the statistics of the distribution. This is somewhat intuitive, as the process becomes less 
deterministic when the amplitude of the stochastic component (i.e. turbulence) increases and vice 
versa. Another important trend to note in these figures is the relative tail behavior of the three 
distribution fits. At low probabilities of exceedance, the regular Weibull distributions will consis-
tently predict the largest values, followed by the value using a Gumbel, then three-parameter 
Weibull, and finally the smallest value with a quadratic Weibull. 

Long-term extreme loads extrapolation 
Once probability distributions to the short-term data have been computed for each wind condi-
tion, a long-term exceedance distribution can be computed by integrating all of the short-term 
distributions with the joint probability density function. 
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where fV,σ(V,σ) is the joint probability density function of the wind conditions. Before doing so, 
it is also important to transform the short-term probabilities from those of local maxima to the 
probability distribution for the single largest event in 10 minutes. Assuming that the local 
maxima are statistically independent, this probability can be estimated as 

( )N
local VLLPVLLP ],[],[ max.min10 σσ <=<    [33] 

where N is the total number of local maxima occurring in a 10 min. period. Note that the number 
of maxima changes with the turbulence level and wind speed due to the fact that the mean cross-
ing frequency increases with turbulence intensity and wind speed. Because of this, the number of 
maxima must be calculated or estimated for each (V, σ) combination. 

Once the integration of short-term distributions is complete, extrapolated loads from the resulting 
exceedance distribution can be estimated. Figure 17 shows the long-term distribution for the out-
of-plane loads of the pitch-regulated turbine. Again, four different distribution fits are shown; 
each of them was calculated using a log-normal turbulence distribution. The two horizontal lines 

 
Figure 16. Probability of exceedance, Vmean = 10 
m/s, σ = 5.0 m/s, stall-regulated turbine (Out-of-
plane bending load) 
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in Figure 17 represent the 1- and 50-year ex-
ceedance probability level, with values of 
1.9x10-5 and 3.8x10-7 respectively. The point at 
which the distributions cross these lines are the 
estimated 1- and 50-year extreme loads. Similar 
to the trend seen in the short-term distributions, 
the regular Weibull model predicts the highest 
extreme loads followed by the Gumbel, three-
parameter Weibull, and then quadratic Weibull. 
Figure 18 shows the out-of-plane distributions 
for the stall-regulated turbine. The trend in pre-
dicted load vs. distribution choice is identical to 
the pitch-regulated machine, but the variation in 
predicted loads is much smaller. This smaller 
variation is most likely due to more accurate 
fitting of the data in the short-term distributions 
of the stall-regulated machine. 

Upon detailed examination of the statistical 
moments, we found that some of the distributions of load maxima had negative skewness values. 
For Weibull and Gumbel distribution-based models this presents a problem because a negative 
skewness is not represented by the model. Only the quadratic Weibull model is capable of yield-
ing a negative fitted skewness and only for severe distortion values. Therefore, any data set with 
negative skewness was neglected in the long-term probability calculation. Because these cases 
occurred for low probability, high-speed, low-turbulence wind conditions, ignoring them had a 
negligible influence on the predicted long-term load. 

Figure 19 shows a comparison between using a normal and log-normal turbulence distribution 
for the pitch-regulated machine. The choice of distribution has little effect on the predicted 1-
year extreme load and has a minor effect on the 50-year load. At lower probability levels, the 
difference increases, but is never greater than 5%. The three-parameter Weibull distribution, out 
of the four models examined, was found to have the largest differences between turbulence dis-

Figure 17. Long-term exceedance probability 
distributions for out-of-plane load of the pitch-
regulated turbine 

Figure 18. Long-term exceedance probability 
distributions for out-of-plane load of the stall-
regulated turbine 

Figure 19. Comparison of effect of turbulence 
distribution on long-term exceedance probabil-
ity for out-of-plane loads of the pitch-regulated 
turbine 
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tributions. The other probabilistic fits had similar behavior at low probability levels, but the dif-
ferences were smaller. 

Model simplification 
While using the integration method along with simulations at all probable wind conditions is 
thorough, the number of simulations required may not be practical from a design perspective due 
to time constraints or limited amounts of data available from experiments. Because of this, sev-
eral alternatives to the integration method are proposed to reduce the amount of data required for 
extrapolation. These methods are input extrapolation, parametric modeling, and deterministic 
turbulence modeling. 

Input extrapolation 
One way to decrease the amount of simulated data needed is to extrapolate the wind inputs be-
fore running them through the aeroelastic simulations. A simple method for extrapolating inputs 
involves finding the 1- and 50-year extreme turbulence level at each mean wind speed. This is 
done by renormalizing the conditional density function of the turbulence level to produce an ex-
ceedance plot of turbulence level at each wind speed, assuming 100% operation at each wind 
speed. Figure 20 shows an example of this procedure for Vmean = 10 m/s. The 1- and 50-year ex-
treme turbulence levels were estimated from this plot and simulations were performed using 
(Vmean, σ1) and (Vmean, σ50) as inputs. The largest value of the bending load from the output of 
this simulation is then the extreme load at this mean wind speed. This process is repeated for all 
operating wind speeds and the largest value for all wind speeds is the extreme load. Since the 
number of turbulence levels at each mean wind speed is reduced to 2, the simulation time sav-
ings are significant. 

To check the validity of this method, nine 10-min. simulations were run for each (Vmean, σ1) and 
(Vmean, σ50) combination and the extreme values were extracted from each simulation. An aver-
age value of the extremes was then calculated at each wind condition to reduce the statistical un-
certainty of the predicted extreme value. The predicted extreme values of the out-of-plane load 
for the stall-regulated turbine from each simulation and the average at each mean wind speed us-

Figure 20. Exceedance probability for turbu-
lence levels at Vmean = 10 m/s 

Figure 21. Extreme value in 10 min. simulation 
using extrapolated 50-year turbulence level 
(Out-of-plane bending load of stall-regulated 
turbine) 
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ing the 50-year turbulence level are shown in Figure 21. Using this method, the predicted 50-
year load is approximately 3200 kNm. Comparing this result to the full integration method of 
Figure 18, we see that the predicted load is very close to that predicted by the three-parameter 
Weibull and quadratic Weibull models. 

One disadvantage of this technique is that it is sensitive to the choice of cut-out wind speed. For 
a stall regulated machine, an increase in cut-out wind speed also leads to a comparable increase 
in predicted extreme loads. The sensitivity for a pitch regulated machine is probably less, since 
the largest loads tend to occur near the rated wind speed for these machines. 

This input extrapolation scheme is a simplified version of a technique known as the Inverse First 
Order Reliability Method (or inverse FORM). Several recent studies of inverse FORM [17, 18] 
have shown its usefulness for wind turbine applications. The authors will defer to the listed ref-
erences for a more detailed explanation of this useful design tool. 

Parametric modeling 
Another method for reducing the amount of data required that can also reduce the uncertainty of 
the statistical moments is to parametrically model the moments. In past studies [2,8,10], power 
law parametric models have been used to represent the various statistical moments with fairly 
good results. In one of the studies [10], the parametric model was also used to calculate the num-
ber of load maxima and the load threshold for a stall-regulated turbine. In this study, using a 
power law to model the load threshold of a pitch-regulated turbine proved to be much more diffi-
cult. As shown in Figure 22, the load threshold (mean value plus 1.4 times standard deviation of 
the original time series) is a highly nonlinear function of mean wind speed that peaks at rated 
wind speed and falls off dramatically on either side. The variation of the threshold value with 
turbulence also depends upon mean wind speed. The threshold value is fairly constant with tur-
bulence near rated, but varies greatly with turbulence away from rated wind speed. Note that the 
threshold value is dependent upon turbulence level because the standard deviation of the bending 
load will be correlated to the standard deviation of the wind speed. Because of this complex be-
havior, an alternative parametric model is proposed that is linear with turbulence level and esti-
mated independently for each integer value of mean wind speed as given in the following for-
mula:  
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Where µi (i = 1-3) are the first three moments of the distribution, the bending load threshold, or 
the number of load maxima per 10 min. simulation. The variables ai and bi are the corresponding 
undetermined coefficients at each mean wind speed, V. For this study we chose σref = 2.5 m/s . 
Each of the coefficient sets was determined using a linear least-squares regression technique. 

Figure 22 also shows the resulting parametric data fit, shown as the curves for each wind speed, 
to the raw values, represented by the “+” symbols, computed for the threshold data. The paramet-
ric model follows the trends in the data as a function of mean wind speed and turbulence level 
quite nicely. Figures  23-25 show the parametric fit and data for the shifted mean, the standard 
deviation, and number of load maxima respectively. Again, the parametric fit of the data follows 
the trends nicely, although the fit for the number of load maxima is not quite as good for some 
turbulence levels at the higher wind speeds. Fortunately, the long-term probability distributions 
are fairly insensitive to this parameter. Note that a similar plot is not shown for the skewness as it 



 18

was fixed to a single value of the mean skewness for all wind conditions, as shown in Figures 10 
and 11. 

Figure 26 shows a comparison of the fully integrated long-term probability distribution using 
both the empirical model of the data shown in Figures 22-25 and the equivalent parametric 
model for both in-plane and out-of-plane loads of the pitch-regulated turbine. Note that the out-
of-plane distribution using the empirical model in this figure is identical to the three-parameter 
Weibull distribution of Figure 17. For the in-plane bending load, the empirical and parametric 
results give identical probability distributions as well as predicted long-term loads. The out-of-
plane load shows some differences between these two models, but the predicted long-term loads 
are within 5% of each other, with the empirical model being more conservative.  

Figure 27 shows an equivalent comparison of the empirical and parametric models for both 
bending loads of the stall-regulated turbine. In this plot, the parametric and empirical models 
agree perfectly for both in-plane and out-of-plane loads and produce equivalent long-term loads. 

Figure 22. Load threshold value compared to 
parametric data fit (Out-of-plane bending load 
of pitch-regulated turbine) 

Figure 23. Shifted mean value of load maxima 
compared to parametric data fit (Out-of-plane 
bending load of pitch-regulated turbine) 

Figure  24. Standard deviation of load maxima 
compared to parametric data fit (Out-of-plane 
bending load of pitch-regulated turbine) 

Figure  25. Number of load maxima compared 
to parametric data fit (Out-of-plane bending 
load of pitch-regulated turbine) 
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Deterministic turbulence model 
Another technique of input extrapolation is to artificially increase the turbulence level for a given 
mean wind speed in the hope that it will produce loads similar to the full integration method. In 
this work, we propose that the turbulence level be assigned a deterministic value of the 90th per-
centile level calculated from the original log-normal distribution. This procedure results in a 
fairly simple equation for turbulence level given by 

)8.0()( bVIV ref +=σ   [35] 

where  Iref and b are equivalent to parameters specified in the IEC 61400 Ed. 2 for the standard 
classes [1]. For class I-A, the values of these parameters are 0.15 and 6 respectively. Note that 
the Iref parameter has been chosen to represent a mean value rather than the mean plus one stan-
dard deviation given by I15 in Ref. [1].  

By using a deterministic turbulence level, one level of integration can be eliminated from the 
long-term probability calculation. Hence, Equation 32 becomes 
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Again nine simulations per wind condition were calculated and smoothing of moments was done 
between wind speeds, with skewness being fixed at the mean value for all wind speeds. Because 
only a single turbulence level was examined at each mean wind speed, the size of total data set 
required was 189 simulations instead of 4725 simulations for the full distribution method, result-
ing in a considerable time savings.  

Figures 28 and 29 show the results of using the deterministic turbulence level to calculate the 
long-term probability distributions for both the pitch and stall regulated machine. Both figures 
show that the deterministic turbulence level predicts nearly identical long-term loads to the full 
integration method for the in-plane bending load. For the out-of-plane bending load the determi-
nistic turbulence level predicts slightly higher extreme loads, where the differences for the pitch-

Figure  26. Long-term probability distributions 
from empirical vs. parametric models for a 
pitch-regulated turbine 

Figure  27. Long-term probability distributions 
from empirical vs. parametric models for a 
stall-regulated turbine 
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regulated turbine, shown in Figure 28, are nearly 10%. If these loads are design drivers, this dif-
ference may motivate the designer to calculate the extreme loads using the more rigorous, full-
integration method and reduce the predicted extreme loads.  However, one should realize that the 
level of conservatism depends on the sensitivity of the specific turbine and control system to tur-
bulence in the inflow. The examples shown here reflect results applicable to the two turbines 
studied.  Other turbines could exhibit higher or lower levels of conservatism. 

Fatigue 
The extrapolation of fatigue cycles is similar to that of extreme loading. Short-term distributions 
are fit to data at different wind conditions, after which long-term distributions are calculated us-
ing an integration method. An elevated turbulence intensity distribution can also be used to sim-
plify the full-integration procedure. Fatigue extrapolation also contains some unique features un-
related to extreme extrapolation techniques, such as correcting fatigue amplitudes for cyclic 
midpoints and lifetime prediction. The details of these procedures and the usefulness of fatigue 
extrapolation are highlighted below. 

Cycle midpoint correction 
For wind turbine applications, the midpoint (or mean) of each rainflow-counted cycle is typically 
not equal to zero as is often assumed when calculating fatigue damage from a single S-N curve. 
Because a nonzero midpoint moves the maximum value in a cycle closer to the ultimate material 
strength, a midpoint offset can add significant damage for each cycle that must be estimated for a 
reliable life prediction. In order to compensate for a nonzero midpoint load, a Goodman correc-
tion was used to adjust the amplitude of the cycle [19]. The applicability of the Goodman correc-
tion differs with material properties, but for this study, provides a rough correction for the effect 
of a cyclic midpoint. This fit is assumed to collapse the S-N curves for different midpoint values. 
A typical Goodman correction adjusts any combination of alternating and midpoint loading to an 
equivalent, zero-midpoint alternating load. However, for large midpoint values, this approxima-
tion can lead to a significant distortion of the alternating load and could possibly change the tail 
of the distribution such that its statistical properties are physically incorrect. Instead, a Goodman 

Figure  28. Comparison of predicted extreme 
loads for a pitch-regulated turbine using dif-
ferent turbulence distributions 

Figure  29. Comparison of predicted extreme 
loads for a stall-regulated turbine using differ-
ent turbulence distributions 
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correction can be used to adjust each cyclic amplitude to a fixed midpoint value closer to the 
original midpoint of each cycle using the following formula 
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where La and Lm are the original load amplitude and midpoint, La eq and Lm eq are the equivalent 
amplitude and midpoint, Lult is the ultimate strength, and c is the Goodman exponent, which was 
assigned the value of 1. In this study, the equivalent midpoint value chosen was the overall mean 
load considering all simulations. 

The ultimate strength for each turbine was assumed to be the 50-year extrapolated extreme load 
times a safety factor of 1.35 (as specified by the IEC [1]). These extrapolated extreme loads were 
equivalent to the extreme loads predicted by the three-parameter Weibull in Figures 17 and 18. 
The ultimate design loads were 4100 kNm for the pitch-regulated turbine and 4550 kNm for the 
stall-regulated turbine. The fatigue lifetimes resulting from this assumption provide a reference 
for determining whether fatigue or ultimate loads will govern the design. For estimated lifetimes 
significantly shorter than a desired lifetime, fatigue considerations will govern the design and 
there will be some margin in ultimate strength. 

Choice of threshold 
As with extreme values, when fitting a distribution of fatigue amplitudes it is more accurate for 
estimating the fatigue damage to fit the general trend of the tail of the data, i.e. the largest cyclic 
amplitude values. This is because the largest amplitude cycles tend to dominate the fatigue dam-
age calculation [19] and any extrapolation of fatigue amplitudes to larger values should be based 
on the trend in the tail, whose data are assumed to be more statistically similar to the most dam-
aging loads than the small amplitude data. Unfortunately, the process of rainflow cycle counting 
often produces many cycles with relatively small amplitudes as seen in Figure 30. 

In this figure there are three sets of data: two are rainflow counted cycles from an aggregate of 
300 simulations of the pitch-regulated turbine 
out-of-plane bending load at a mean wind speed 
of 10 m/s and turbulence intensity of 18%, 
while the other data set is an aggregate of only 
nine simulations (appropriately labeled) for the 
same turbine and wind conditions.  

For each data set there is also a fit to the data 
calculated using the moment-based probability 
code. All short-term fitted probability distribu-
tions of fatigue cycles were calculated using a 
modified version of the FITS code [15]. All of 
the fits used a 3-parameter Weibull model, 
which required knowledge of the mean, stan-
dard deviation, and skewness of the data. 

Concentrating first on the data set from 300 
simulations, notice that the fit to the data is in-

Figure  30. Threshold effect on exceedance 
probability and fitted distribution for out-of-
plane bending load on the pitch regulated tur-
bine. 
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fluenced by a large number of small amplitude 
cycles and therefore deviates from the trend in 
the tail of the data. In order to improve the fit to 
the data, a threshold value for the fatigue ampli-
tudes is used. All fatigue amplitude values 
above this threshold are retained and a fitted dis-
tribution is calculated only for these cycles. A 
reasonable threshold value for most wind condi-
tions was found to be the 99th percentile of the 
cyclic amplitude distribution. Figure 30 also 
shows the distribution and fit to the data above 
the threshold. The agreement between the fit 
and the trend in the tail is significantly improved 
compared to using no threshold. 

Because we examined 525 different wind condi-
tions, it would have been unrealistic to run 300 
simulations for each wind condition. Therefore, 
we limited the number of simulations per wind condition to nine. The third data set in Figure 30 
shows the fatigue cycle amplitudes above threshold from an aggregate of nine simulations. No-
tice that the probabilities of exceedance are very similar to the larger data set, which gives some 
confidence that the limited data set at each wind condition will provide statistically similar re-
sults even though the number of data points is considerably less than the larger data set. 

In Figure 30, the probability of exceedance for the data above the threshold is much different 
from the data without a threshold. As was demonstrated with the extreme values, this is because 
the probability of exceedance is inversely proportional to the number of data points in the data 
set for the fixed total time duration. After thresholding the data, there are many fewer points and 
hence the probability of exceedance for the same given duration is higher. If we normalize the 
probabilities by the number of points in the original data set, as shown in Figure 31, there is per-
fect agreement between the original data distribution and the data above the threshold. The nor-
malized distributions also highlight the difference between the fits to the two different data sets. 

Because the majority of fatigue cycles are removed when calculating the short-term distribution, 
using these fitted distributions to calculate damage can lead to non-conservative results. This is 
particularly true when the material fatigue exponents are low and the largest fatigue cycles no 
longer dominate the accumulated damage. In order to compensate for this effect, after threshold-
ing the amplitude cycles the damage for all of the cycles below the threshold was calculated for 
each wind condition. This damage was then added to the damage calculated from the fitted dis-
tribution in order to calculate fatigue lifetimes, as described below. 

Long-term cycle distribution 
After correcting for varying midpoints and thresholding the data at each wind condition, long-
term cyclic distributions were determined. Similar to the method used for extreme values, the 
cyclic distributions were calculated by integrating the short-term probabilities at each wind con-
dition with the joint probability density function and the expected number of cycles as shown in 
the following formula  

Figure  31. Normalized probabilities of ex-
ceedance for out-of-plane bending load on the 
pitch regulated turbine. 
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where nLT(L) is the long-term, unconditional expected number of cycles larger than L in 10 min, 
n(V,σ) is the number of cyclic amplitudes in a 10-minute simulation above the threshold value 
and fV,σ(V,σ) is the joint probability density function of the wind conditions. Note that, because 
the short-term probability distributions are fit to the upper 1% of the data, the long-term cyclic 
distributions are only valid for extrapolating to long-return-period, large-amplitude cycles and 
will not necessarily reflect the probability distribution at lower amplitudes. It is also important to 
notice that the number of cyclic amplitudes for a fixed time duration varies with wind condition 
and must be included inside the integral to account for the changing sample rate. 

The long-term cyclic distributions for the pitch and stall-regulated turbines are shown in Figures 
32 and 33 respectively. These distributions are shown as the number of cycles per year, which is 
easily obtained by multiplying Equation 38 by the number of 10-minute periods in one year 
(52,596). The horizontal lines in each of these figures represent the 1- and 50-year return periods. 
The long-term distribution curves cross these horizontal lines at the estimated extreme 1- and 50-
year loading amplitude values. For both turbines, the extrapolated amplitudes for the out-of-
plane load are larger than the extrapolated in-plane loads. Therefore, the out-of-plane fatigue 
loads are likely to contribute the most damage and drive the fatigue design of the turbine. How-
ever, notice that for the stall-regulated turbine (Fig. 33), the distribution curves are higher for the 
in-plane loading at lower amplitude values. Depending on how fatigue damage accumulates, 
these lower level loads with a greater number of cycles could produce damage equivalent to or 
greater than the out-of-plane loading. 

Lifetime estimation 
Estimates of the lifetime of a turbine blade were calculated using the accumulated damage from 
the data below the threshold and the short-term probability fits to the amplitude data above the 
threshold as in the following formulas 

Figure  32. Expected number of cycles per year 
for pitch-regulated turbine. 

Figure  33. Expected number of cycles per year 
for stall-regulated turbine. 
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where Do (V, σ) is the damage fraction for all cycles, Li(V,σ), that are below the threshold, Lth (V, 
σ) is the threshold at a given wind condition, Dth(V,σ) is the equivalent damage fraction of the 
fitted distribution above the threshold, fL|V,σ(L|V,σ) is the fitted conditional density function for 
the loading amplitude above the threshold,  n(V,σ) is the number of cycles above the threshold 
for a given time period T,  fV,σ(V,σ) is the joint probability density function for the wind condi-
tions, N is the number of cycles to failure for a given load amplitude, and m is the material fa-
tigue exponent. 

As mentioned above, the ultimate bending strength for each turbine blade, Lult, was based on a 
probabilistic extrapolation of extreme loads. The above formulas assume that Miner's rule of lin-
ear accumulated damage with a power law S-N curve is valid [19]. The lifetime calculations also 
assumed that the fatigue design was dominated by the larger out-of-plane bending loads and the 
in-plane loads were ignored. Load cycles arising from non-operating design situations were also 
neglected. 

Figures 34 and 35 show the estimated lifetime for both turbines as a function of the material ex-
ponent. In both of these figures there are two curves: one that represents the lifetime estimated 
only from the data (above and below the threshold) and the other that replaces the data above the 
threshold with the fitted distribution, as described above. For most exponent values the differ-
ence between using only the data and adding the damage from the fitted distribution is insignifi-
cant. At the highest exponent values the differences between the two curves increases slightly. 
The increasing difference as a function of material exponent arises from more damage being 
done by the large amplitude cycles when the material exponent is also large. Using the fitted dis-
tribution above the threshold adds some more damage resulting from the rare large amplitudes 
that may be missing in the simulation data. Because the differences between the data and fit are 
so small, using fitted distributions to extrapolate the damage may be unnecessary. However, if 
less data were available for calculating damage, the differences between the predicted lifetimes 
for the extrapolation and the data would be larger. 

Another significant result noticeable in these figures is the relative difference in fatigue lifetimes 
for the different material exponents. For a typical wind turbine design, a reasonable expected 
lifetime would be close to 30 years or longer, when considering appropriate margins for struc-
tural reliability. In these figures, lifetimes longer than 30 years are expected only for the highest 
values of material exponent. Reasonable lifetimes are obtained for exponent values only above 6 
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for the stall-regulated turbine and above 8 for the pitch-regulated turbine. For a lower material 
exponent of 3, the estimated lifetimes for both turbines are on the order of several hours, which 
is obviously not economically realistic. For these types of materials, which are typically metals 
(steels, etc.), fatigue considerations dominate over considerations of ultimate loading. Therefore, 
the ultimate strength of the turbine must be increased in order to obtain a reasonable fatigue de-
sign lifetime. This will lead to a much larger design margin for ultimate loading. 

Simplified model 
To reduce the number of simulations required, we saw above that the inputs to the simulations 
can be increased to approximate extrapolated long-term extreme values. For fatigue 
extrapolation, we propose that the turbulence level be assigned the same deterministic value of 
the 90th percentile level calculated from the original log-normal conditional distribution. This 
procedure results in a fairly simple equation for turbulence level given by 

)8.0()( bVIV ref +=σ   [43] 

where the values of Iref and b are 0.15 and 6 respectively, as stated above. 

By using a deterministic turbulence level, one level of integration is eliminated from the long-
term probability calculation. Hence, Equation 38 becomes 
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and Equation 39 becomes 
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and similar reductions are applied to Equations 40 and 41. 

Figure  34. Estimated fatigue life for pitch-
regulated turbine. 

Figure  35. Estimated fatigue life for stall-
regulated turbine. 
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Again, nine simulations per wind condition were calculated requiring only 189 simulations in-
stead of 4725 simulations for the full distribution method. 

Figures 36 and 37 compare the estimated lifetimes using the original full distribution of wind 
speed and turbulence level to the lifetime estimated using the deterministic 90th percentile turbu-
lence level at each wind speed. For both turbines, the estimated fatigue life using the determinis-
tic turbulence level follows the same trend as lifetime calculated from the full distribution, but 
the lifetime from the deterministic turbulence level is lower (i.e. conservative). Because the dif-
ferences in lifetimes between the two distributions are less than an order of magnitude, using the 
deterministic turbulence level may be advantageous. The fact that, for both turbines considered, 
the lifetime prediction using this simplification was conservative adds to its appeal. However, 
caution must be exercised in general, because it is possible that certain nonlinear loading effects 
leading to much higher load sensitivity to turbulence could lead to non-conservative results. 

One-year Simulation 
To determine their accuracy, results from the statistical load extrapolation methods were com-
pared to direct simulations of operating loads for a 1-year period. Because the direct simulation 
was done with the same simulation codes (SNWind [12] and FAST [13]) to acquire data as the 
extrapolation methods, they both should produce nearly identical long-term distributions for one 
year.  

To produce one-year’s worth of data, both wind turbine models were simulated for an entire year 
in 10-minute segments. Using the joint density function of wind speed and turbulence level de-
scribed by Equations 1-9, the number of 10-minute simulations per wind condition were deter-
mined by randomly sampling values from the joint probability distribution, 52,596 times (the 
number of 10-minute periods per year). If the value of the mean wind speed was below 5 m/s, the 
wind condition was eliminated, because the turbines, with startup wind speeds of approximately 
5 m/s, will likely never operate at these low wind speeds. Wind speeds above the cut-out wind 
speeds (25 m/s) were also eliminated to create a data set consistent with the long-term extrapola-
tion method. Transients that occur from either startup or shut down of the turbine near the limits 
of its operating range were neglected. After eliminating the non-operating wind speeds, ap-
proximately 43,000 simulations remained. The numbers of simulations per wind condition are 

Figure  36. Estimated fatigue life for pitch-
regulated turbine using deterministic turbu-
lence level. 

Figure  37. Estimated fatigue life for stall-
regulated turbine using deterministic turbu-
lence level. 
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shown graphically in Figures 38 and 39. Note that in Figure 39, the contour of joint probability 
density function (smooth lines) is plotted along with the contour of the actual number of cycles. 
This demonstrates that some simulations had wind conditions that were outside of the one-year 
return period, which is statistically realistic. 

Because of the large number of simulations, it was essential that none of the random wind con-
ditions were repeated. To ensure that this occurred, the final seed numbers of an SNWind 
simulation were used as the initial inputs into the following simulation. This process was re-
peated until all simulations were complete. Because the random number generator in SNWind 
has a return period on the order of 2x1018, the stochastic component of each simulation was 
uncorrelated with all other simulations. 

Extreme Values 
Figure 40 compares the data from the direct one-year simulation to the predicted long-term dis-
tributions of extreme loads using the full integration method. In this figure, asterisks represent 
the data distributions from each of the three blades on the turbine. The three different data sets 
highlight the variability of the simulated long-term distribution. This variability is highest for the 
largest extreme values because of their low frequency of occurrence and hence greatest uncer-
tainty. In the figure, we can see that the predicted distribution of the in-plane loads matches the 
actual distribution from the direct simulation very well. At the highest values near the one-year 
extreme, the predicted distribution slightly underestimates some of the data, but the errors are on 
the order of 5%. On the other hand, the predicted distribution for the out-of-plane loads greatly 
overestimates the actual distribution, where the difference in predicted one-year extreme values 
is close to 20%. This difference can be attributed to a failure of the short-term distributions to 
follow the trends in the tails of the data, especially near rated wind speed and higher levels of 
turbulence intensity. As stated above, one may have to use a different method of fitting the data 
distributions for pitch-regulated turbines if this error in the predicted distribution is to be re-
duced. 

Figure 41 compares the predicted long-term distributions of extreme loads to the data from the 
direct one-year simulation. In this figure, predictions of both the in-plane and out-of-plane loads 
agree well with the actual data. Prediction of the one-year extreme out-of-plane load is slightly 

Figure  38. Total number of 10-minute simula-
tions per wind condition in one-year 

Figure  39. Contour of number of 10-minute 
simulations per wind condition and joint prob-
ability density function 
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less than some of the actual data, which can be attributed to the random uncertainty of the data 
for these extreme values. 

Fatigue 
Figures 42 and 43 show comparisons of the long-term distributions of fatigue cycles compared to 
data from the direct one-year simulation for both turbines. Again, asterisks represent the data of 
three different data sets, one for each blade. As with the extreme values, the predicted fatigue 
distributions for the in-plane loads of both turbines agreed very well with the actual data distribu-
tions. However, for the out-of-plane loads, the agreement is not as good, particularly for the 
pitch-regulated machine. Again, this is likely due to the inability to accurately predict the short-
term distributions at each wind condition using the method of moments.  

Because the out-of-plane loads are overpredicted for both turbines, one would expect that life-
time predictions using extrapolation would estimate shorter lifetimes than actually would occur. 
As seen in Figures 44 and 45, this is the case, although the differences are not large. For most 

Figure  40. Predicted long-term distributions of 
extreme loads compared to direct simulation 
data for pitch-regulated turbine. 

Figure  41. Predicted long-term distributions of 
extreme loads compared to direct simulation 
data for stall-regulated turbine. 

Figure  42. Predicted long-term distributions of 
fatigue loads compared to direct simulation 
data for pitch-regulated turbine. 

Figure  43. Predicted long-term distributions of 
fatigue loads compared to direct simulation 
data for stall-regulated turbine. 
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material fatigue exponents, the extrapolated lifetime is less than predicted when using one-year's 
worth of data. The error is greatest at the lowest values of material fatigue exponent, which 
represents materials like steel etc. Interestingly, for the pitch-regulated turbine, the agreement 
between one-year simulation data and extrapolation is very good for material fatigue exponents 
between 6 and 8. The implication of this is that the large difference between distributions seen in 
Figure 42 does not result in a large difference in predicted fatigue life for these material expo-
nents. In other words, fatigue cycles with the largest amplitudes will not dominate the fatigue 
spectrum of this turbine, but lower amplitudes cycles with greater frequency will instead. 

Another interesting trend seen in these figures is that the predicted lifetimes using extrapolation 
were within one order of magnitude or less of the one-year simulation estimate, which is often 
considered the error band for fatigue estimates using Miner's rule. Finally, considering the dis-
cussion of Figures 34 and 35, one can conclude that using only 4725 simulations of the turbines 
operating in a representative wind environment produced nearly identical fatigue life estimates to 
an entire year's worth of simulations. 

Conclusions 
We found probabilistic methods to be useful for extrapolating extreme wind turbine bending 
loads from a limited data set. Compared to a direct simulation of one year's worth of operation, 
the probabilistic methods accurately predicted the extreme loading distribution of in-plane bend-
ing loads on both a pitch and stall-regulated machine, as well as out-of-plane loads on the stall 
regulated turbine. The methods used overpredicted the extreme loads in the out-of-plane direc-
tion for the pitch-regulated turbine by 20% or more. This overestimation was due to the method 
of moments’ inability to accurately model the extreme distribution of these loads near rated wind 
speed and at high turbulence intensities. On pitch-regulated machines, this operating regime is 
marked by a change in loading behavior that may require alternative probability methods to 
model correctly. 

The choice of distribution used to model loads dramatically affected the predicted long-term ex-
treme loads. A regular Weibull model was most conservative, followed by a Gumbel, three-
parameter Weibull, and finely quadratic Weibull.  

Figure  44. Predicted lifetimes compared to 
direct simulation data for pitch-regulated tur-
bine. 

Figure  45. Predicted lifetimes compared to 
direct simulation data for stall-regulated tur-
bine. 
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Using a threshold for selection of the extreme values was found to improve the estimate of the 
long-term loads. By only selecting the largest values between successive up-crossings of the 
threshold, the bias introduced in the statistical moments due to the more frequent smaller local 
maxima is removed and the retained local maxima are less correlated.  The resulting estimated 
distribution more closely follows the trend of the largest extreme values. An acceptable threshold 
value for both in-plane and out-of-plane extreme blade loads was found to be the mean value 
plus 1.4 times the standard deviation of the original time series for the quantity of interest. 
Higher-order moments, such as the standard deviation and skewness of the extreme distribution, 
were found to have the greatest amount of uncertainty and also the largest influence on the ex-
trapolated long-term loads. Some of this uncertainty was mitigated by using larger data sets of 
10-minute simulations, smoothing the moments with neighboring wind conditions, and paramet-
rically modeling the moments before calculating a fitted distribution. Using a parametric model 
of the data moments was also valuable for reducing the amount of data needed to predict long-
term loads. The estimated loads were within 5% of those calculated with a full integration 
method.  
A deterministic model of the turbulence level was used to simplify the calculation of the long-
term probability distributions of extreme loads. A 90th percentile turbulence level was found to 
predict in-plane loads similar to those predicted by the full integration method and out-of-plane 
loads that were 5% to 10% more conservative than the full integration method. This elevated tur-
bulence level may provide a useful simplification for designers looking for a quicker implemen-
tation of loads extrapolation techniques. 

Extrapolating the turbulence level before input into the aeroelastic codes may also be a useful 
method for reducing the data requirements of extreme extrapolation, although a more sophisti-
cated method, such as inverse FORM, is recommended for better accuracy. 

The usefulness of probabilistic methods to predict fatigue damage was less certain. As with ex-
treme loads, probabilistic methods produced cyclic amplitude distributions of in-plane loads very 
similar to data extracted from a direct one-year simulation. The same methods overpredicted the 
out-of-plane amplitude distribution and may be unnecessarily conservative. Using probabilistic 
fits to determine fatigue lifetimes produced nearly identical results to using raw rainflow cycles 
extracted from the time series, and therefore may be redundant. However, if a smaller data set 
was used with a size typical for industrial design, probabilistic fitting of the data may have pro-
duced more conservative and probably more accurate estimates of the fatigue lifetime. Using the 
large data set of 4725 simulations in this study produced lifetime estimates on the same order as 
data from an entire year’s worth of simulation. 

A Goodman correction was found to be useful for correcting rainflow counted amplitudes with 
nonzero midpoints. Inclusion of this correction increases the equivalent damage for a given am-
plitude and should produce more accurate results. Although, the accuracy of this correction is 
most likely a function of the material properties and should be studied further. 

Using a threshold value of the 99th percentile of the amplitude distribution greatly increased the 
accuracy of the moment-based methods to follow the trend in the tail of the data. Also, using a 
limited data set of nine simulations was found to be statistically similar to a much larger data set, 
which inherently has statistical moments with lower uncertainty. 

Out-of-plane bending loads were determined to produce larger amplitude cycles than the in-plane 
loads. Because of this, these loads where assumed to dominate the fatigue loading of the turbine 
designs. 
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Fatigue lifetime varied greatly with material fatigue exponent values. For low exponent valued 
materials, such as steel, it was found that the fatigue component of the design dominates relative 
to the ultimate loading component. 

A simplified probabilistic method using an artificially elevated turbulence intensity was found to 
produce slightly conservative lifetime estimates relative to the full distribution method. Because 
of its reduced data needs, this method may provide a useful tool for designing turbines similar to 
the ones in this study. 

Future work 
Continuation of this work should address the failure of the method of moments to accurately 
predict short-term distributions of the pitch-regulated wind turbine under certain operating condi-
tions. Alternative methods for probabilistic fitting should be examined, such as maximum likeli-
hood or regression methods. The extrapolation methods could also be applied to experimental 
test data gathered from operating wind turbines. Other areas of research that would be of interest 
and are currently being studied by other researchers, are environmental extrapolation (e.g. in-
verse FORM) methods that greatly reduce the number of simulations required for design pur-
poses. Finally, the authors recommend further examination of fatigue extrapolation. For exam-
ple, as was alluded to in this study, extrapolation was not required to estimate the fatigue lifetime 
of the turbine, if a large data set was available. However, if the data set used for extrapolation 
was smaller, the extrapolation technique may have proven useful. The limit of data set size at 
which extrapolation becomes useful would be of interest. 
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